
Conceal ROP gadgets for AArch64 COTS binary

Dongli Zhang

Oracle Asia Research and Development Centers (Beijing)

dongli.zhang@oracle.com

December 11, 2017

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 1 / 35

Plan

ROP Attack: Return Oriented Programming Attack

ELF and AArch64

NORAX: eXecute-Only-Memory (XOM) on AArch64

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 2 / 35

Code Injection Attack

Stack Smashing: to inject and run shellcode in stack

Linux x86 64 Calling Convention: RDI, RSI, RDX, RCX, R8, R9, XMM07

Return address (8-byte)

stack of ./victim

EBP Register (8-byte)

char name[64] (64-byte)

… ...

/* victim.c */
int main()
{
 char name[64];
 puts("What's your name?");
 gets(name);
 printf("Hello, %s!\n", name);
 return 0;
}

0x0

address of name[64]

input of
gets(name);

overwrite

overwrite

overwrite

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 3 / 35

Stack Smashing Mitigations

Stack Canary

StackGuard: Automatic Adaptive Detectionand Prevention of Buffer-Overflow Attacks.
USENIX Security 1998.

To disable via: gcc -fno-stack-protector -o victim victim.c

DEP (Data Execution Prevention): W⊕X (NX bit)

Attackers are not able to execute any injected code!
To disable via: execstack -s victim

ASLR (Address Space Layout Randomization)

Transparent runtime randomization for security. SRDS 2003.
To disable via: setarch ‘arch‘ -R ./victim
To disable via: echo 0 > /proc/sys/kernel/randomize va space

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 4 / 35

Stack Smashing Mitigations

Stack Canary

StackGuard: Automatic Adaptive Detectionand Prevention of Buffer-Overflow Attacks.
USENIX Security 1998.
To disable via: gcc -fno-stack-protector -o victim victim.c

DEP (Data Execution Prevention): W⊕X (NX bit)

Attackers are not able to execute any injected code!
To disable via: execstack -s victim

ASLR (Address Space Layout Randomization)

Transparent runtime randomization for security. SRDS 2003.
To disable via: setarch ‘arch‘ -R ./victim
To disable via: echo 0 > /proc/sys/kernel/randomize va space

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 4 / 35

Stack Smashing Mitigations

Stack Canary

StackGuard: Automatic Adaptive Detectionand Prevention of Buffer-Overflow Attacks.
USENIX Security 1998.
To disable via: gcc -fno-stack-protector -o victim victim.c

DEP (Data Execution Prevention): W⊕X (NX bit)

Attackers are not able to execute any injected code!
To disable via: execstack -s victim

ASLR (Address Space Layout Randomization)

Transparent runtime randomization for security. SRDS 2003.
To disable via: setarch ‘arch‘ -R ./victim
To disable via: echo 0 > /proc/sys/kernel/randomize va space

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 4 / 35

Stack Smashing Mitigations

Stack Canary

StackGuard: Automatic Adaptive Detectionand Prevention of Buffer-Overflow Attacks.
USENIX Security 1998.
To disable via: gcc -fno-stack-protector -o victim victim.c

DEP (Data Execution Prevention): W⊕X (NX bit)

Attackers are not able to execute any injected code!
To disable via: execstack -s victim

ASLR (Address Space Layout Randomization)

Transparent runtime randomization for security. SRDS 2003.

To disable via: setarch ‘arch‘ -R ./victim
To disable via: echo 0 > /proc/sys/kernel/randomize va space

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 4 / 35

Stack Smashing Mitigations

Stack Canary

StackGuard: Automatic Adaptive Detectionand Prevention of Buffer-Overflow Attacks.
USENIX Security 1998.
To disable via: gcc -fno-stack-protector -o victim victim.c

DEP (Data Execution Prevention): W⊕X (NX bit)

Attackers are not able to execute any injected code!
To disable via: execstack -s victim

ASLR (Address Space Layout Randomization)

Transparent runtime randomization for security. SRDS 2003.
To disable via: setarch ‘arch‘ -R ./victim
To disable via: echo 0 > /proc/sys/kernel/randomize va space

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 4 / 35

Code Reuse Attack (1/2)

Gadgets: instruction sequence ended with ”ret” instruction within existing program or
libraries already present in memory

ROP (Return Oriented Programming): to perform arbitrary operations by chaining
relavant gadgets to bypass DEP

Return address (8-byte)

stack of ./victim

EBP Register (8-byte)

char name[64] (64-byte)

… ...

/* victim.c */
int main()
{
 char name[64];
 puts("What's your name?");
 gets(name);
 printf("Hello, %s!\n", name);
 return 0;
}

0x0

addr of “pop rdi; ret”

input of
gets(name);

overwrite

addr of “/bin/sh”

addr of system() in libc.so

string “/bin/sh”

overwrite

overwrite

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 5 / 35

Code Reuse Attack (2/2)

1 inject ROP payload

2 hijack control flow

3 stack pivot sequences (e.g., mov %eax, %esp; ret)

4 ”ret” redirects to ROP payload

5 ROP gadget and ret

6 ROP gadget and ret

7 ROP gadget and ret

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 6 / 35

Code Reuse Attack (2/2)

1 inject ROP payload

2 hijack control flow

3 stack pivot sequences (e.g., mov %eax, %esp; ret)

4 ”ret” redirects to ROP payload

5 ROP gadget and ret

6 ROP gadget and ret

7 ROP gadget and ret

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 6 / 35

Code Reuse Attack (2/2)

1 inject ROP payload

2 hijack control flow

3 stack pivot sequences (e.g., mov %eax, %esp; ret)

4 ”ret” redirects to ROP payload

5 ROP gadget and ret

6 ROP gadget and ret

7 ROP gadget and ret

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 6 / 35

Code Reuse Attack (2/2)

1 inject ROP payload

2 hijack control flow

3 stack pivot sequences (e.g., mov %eax, %esp; ret)

4 ”ret” redirects to ROP payload

5 ROP gadget and ret

6 ROP gadget and ret

7 ROP gadget and ret

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 6 / 35

Code Reuse Attack (2/2)

1 inject ROP payload

2 hijack control flow

3 stack pivot sequences (e.g., mov %eax, %esp; ret)

4 ”ret” redirects to ROP payload

5 ROP gadget and ret

6 ROP gadget and ret

7 ROP gadget and ret

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 6 / 35

Fine-Grained Address Space Layout Randomization (ASLR)

function order permutation

basic block order permutation

swap registers and replace instructions

instruction location randomization

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 7 / 35

Just-In-Time Return Oriented Programming Attack

Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout
Randomization. IEEE S&P (Oakland) 2013

Thread Model Assumption

Exercise a vulnerable entry point

Execute arbitrary malicious computations

Leak Code
Pointer

Exploit

Vulnerable
Program

Adversary Recursively map
code memory

pages via code
pointers

Find ROP
gadgets from

each code
memory page

JIT-compile ROP
program

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 8 / 35

Memory Disclosure

Direct Memory Disclosure

read instructions in code page

Indirect Memory Disclosure

return address

function pointer

dynamic linking information

c++ vtable & exception handler

ret addr

stack

return address
on stack or
code pointer in
data section

Control flow transfer

Control flow transfer

cross module call

... ...

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 9 / 35

Readactor 1/2

Readactor: Practical Code Randomization Resilient to
Memory Disclosure. IEEE S & P 2015

Fine-grained code diversification via LLVM

Code and data separation via Intel EPT and LLVM

Code-pointer hiding via LLVM

Does not support COTS binary

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 10 / 35

Readactor 2/2

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 11 / 35

Readactor 2/2

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 11 / 35

New and Hard Problem

● Enable XOM on Android AArch64 COTS binaries (NORAX)
● Hide code pointers in data section (future work)

COTS AArch64
No

Compiler
Change

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 12 / 35

COTS Binary - Commercial Off-The-Shelf

aarch64-linux-gnu-strip <binary>

without symbol information

0000000000002460 <main>:
 2460: d111c3ff sub sp, sp, #0x470
 2464: a9ba7bfd stp x29, x30, [sp,#-96]!
 2468: 910003fd mov x29, sp
 … …
0000000000003484 <_start>:
 3484: 8b3f63e0 add x0, sp, xzr
 3488: 17ffffea b 3430 <do_arm64_start>
000000000000348c <__atexit_handler_wrapper>:
 348c: a9be7bfd stp x29, x30, [sp,#-32]!
 3490: 910003fd mov x29, sp
 … …
00000000000034b4 <atexit>:
 34b4: a9be7bfd stp x29, x30, [sp,#-32]!
 34b8: 910003fd mov x29, sp

2460: d111c3ff sub sp, sp, #0x470
2464: a9ba7bfd stp x29, x30, [sp,#-96]!
2468: 910003fd mov x29, sp
 … …
3484: 8b3f63e0 add x0, sp, xzr
3488: 17ffffea b 3430
348c: a9be7bfd stp x29, x30, [sp,#-32]!
3490: 910003fd mov x29, sp
 … …
34b4: a9be7bfd stp x29, x30, [sp,#-32]!
34b8: 910003fd mov x29, sp

Original Binary COTS Binary

aarch64-linux-gnu-strip

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 13 / 35

ELF - Linking vs. Execution

segments sample

INTERP
LOAD
DYNAMIC

sections sample

.interp

.dynsym, .dynamic

.rela.dyn, .rela.plt, .got.plt, .got

.plt, .text

.data, .rodata, .bss

manuals

Executable and Linkable Format (ELF)
ELF for the ARM Architecture
ELF for the ARM 64-bit Architecture
(AArch64)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 14 / 35

ELF - load executable ELF

1 user space loads executable binary via exec system call

2 kernel loads executable binary and dynamic linker into memory

3 dynamic linker performs linking jobs while loading all prerequisite libraries (android is
without lazy address resolution)

4 start the executable binary

5 resolve dynamic symbol on-demand by linker

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 15 / 35

ELF - load executable ELF

1 user space loads executable binary via exec system call

2 kernel loads executable binary and dynamic linker into memory

3 dynamic linker performs linking jobs while loading all prerequisite libraries (android is
without lazy address resolution)

4 start the executable binary

5 resolve dynamic symbol on-demand by linker

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 15 / 35

ELF - load executable ELF

1 user space loads executable binary via exec system call

2 kernel loads executable binary and dynamic linker into memory

3 dynamic linker performs linking jobs while loading all prerequisite libraries (android is
without lazy address resolution)

4 start the executable binary

5 resolve dynamic symbol on-demand by linker

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 15 / 35

ELF - load executable ELF

1 user space loads executable binary via exec system call

2 kernel loads executable binary and dynamic linker into memory

3 dynamic linker performs linking jobs while loading all prerequisite libraries (android is
without lazy address resolution)

4 start the executable binary

5 resolve dynamic symbol on-demand by linker

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 15 / 35

ELF - load executable ELF

1 user space loads executable binary via exec system call

2 kernel loads executable binary and dynamic linker into memory

3 dynamic linker performs linking jobs while loading all prerequisite libraries (android is
without lazy address resolution)

4 start the executable binary

5 resolve dynamic symbol on-demand by linker

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 15 / 35

ELF - resolve dynamic symbol

Suppose ./test calls function puts() belong to libc (lazy address resolution):

1 ./test calls puts@plt belong to plt section

2 puts@plt redirects to puts in got.plt which points to corresponding handler in ld

3 ld calculates the hash of symbol name (puts), traverses each libraries and searches in
buckets of gnu.hash with the hash value to identify the index of puts() in dynsym section

4 Once entry of puts in dynsym is identified, the address of puts would be written to got.plt
with the help of binary’s rela.plt

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 16 / 35

ELF - resolve dynamic symbol

Suppose ./test calls function puts() belong to libc (lazy address resolution):

1 ./test calls puts@plt belong to plt section

2 puts@plt redirects to puts in got.plt which points to corresponding handler in ld

3 ld calculates the hash of symbol name (puts), traverses each libraries and searches in
buckets of gnu.hash with the hash value to identify the index of puts() in dynsym section

4 Once entry of puts in dynsym is identified, the address of puts would be written to got.plt
with the help of binary’s rela.plt

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 16 / 35

ELF - resolve dynamic symbol

Suppose ./test calls function puts() belong to libc (lazy address resolution):

1 ./test calls puts@plt belong to plt section

2 puts@plt redirects to puts in got.plt which points to corresponding handler in ld

3 ld calculates the hash of symbol name (puts), traverses each libraries and searches in
buckets of gnu.hash with the hash value to identify the index of puts() in dynsym section

4 Once entry of puts in dynsym is identified, the address of puts would be written to got.plt
with the help of binary’s rela.plt

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 16 / 35

ELF - resolve dynamic symbol

Suppose ./test calls function puts() belong to libc (lazy address resolution):

1 ./test calls puts@plt belong to plt section

2 puts@plt redirects to puts in got.plt which points to corresponding handler in ld

3 ld calculates the hash of symbol name (puts), traverses each libraries and searches in
buckets of gnu.hash with the hash value to identify the index of puts() in dynsym section

4 Once entry of puts in dynsym is identified, the address of puts would be written to got.plt
with the help of binary’s rela.plt

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 16 / 35

AArch64

instructions: 4-byte aligned and fixed size

mode: user (EL0), kernel (EL1), hypervisor
(EL2) and secure monitor (EL3)

registers: X0-X30 (X29 is FP, X30 is LR), SP
(PC is not accessible)

branch: B, BL (Branch with Link), BLR
(Branch with Link to Register), BR (Branch to
Register), B.cond

memory load: ADR, ADRP, LDR

other: ARM Architecture Reference Manual:
ARMv8, for ARMv8-A architecture profile

since Android 5.0 (Lolopop), non-PIE loading
is no longer supported

El2: Hypervisor Mode
(Trustzone Normal World)

El1: Kernel Mode
(Trustzone Normal World)

EL0: User Mode
(Trustzone Normal World)

AArch64 CPU Exception Level

EL3: Secure Monitor
Trustzone Secure World

N/A

El1: Kernel Mode
(Trustzone Secure World)

EL0: User Mode
(Trustzone Secure World)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 17 / 35

AArch64

instructions: 4-byte aligned and fixed size

mode: user (EL0), kernel (EL1), hypervisor
(EL2) and secure monitor (EL3)

registers: X0-X30 (X29 is FP, X30 is LR), SP
(PC is not accessible)

branch: B, BL (Branch with Link), BLR
(Branch with Link to Register), BR (Branch to
Register), B.cond

memory load: ADR, ADRP, LDR

other: ARM Architecture Reference Manual:
ARMv8, for ARMv8-A architecture profile

since Android 5.0 (Lolopop), non-PIE loading
is no longer supported

El2: Hypervisor Mode
(Trustzone Normal World)

El1: Kernel Mode
(Trustzone Normal World)

EL0: User Mode
(Trustzone Normal World)

AArch64 CPU Exception Level

EL3: Secure Monitor
Trustzone Secure World

N/A

El1: Kernel Mode
(Trustzone Secure World)

EL0: User Mode
(Trustzone Secure World)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 17 / 35

AArch64

instructions: 4-byte aligned and fixed size

mode: user (EL0), kernel (EL1), hypervisor
(EL2) and secure monitor (EL3)

registers: X0-X30 (X29 is FP, X30 is LR), SP
(PC is not accessible)

branch: B, BL (Branch with Link), BLR
(Branch with Link to Register), BR (Branch to
Register), B.cond

memory load: ADR, ADRP, LDR

other: ARM Architecture Reference Manual:
ARMv8, for ARMv8-A architecture profile

since Android 5.0 (Lolopop), non-PIE loading
is no longer supported

El2: Hypervisor Mode
(Trustzone Normal World)

El1: Kernel Mode
(Trustzone Normal World)

EL0: User Mode
(Trustzone Normal World)

AArch64 CPU Exception Level

EL3: Secure Monitor
Trustzone Secure World

N/A

El1: Kernel Mode
(Trustzone Secure World)

EL0: User Mode
(Trustzone Secure World)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 17 / 35

AArch64

instructions: 4-byte aligned and fixed size

mode: user (EL0), kernel (EL1), hypervisor
(EL2) and secure monitor (EL3)

registers: X0-X30 (X29 is FP, X30 is LR), SP
(PC is not accessible)

branch: B, BL (Branch with Link), BLR
(Branch with Link to Register), BR (Branch to
Register), B.cond

memory load: ADR, ADRP, LDR

other: ARM Architecture Reference Manual:
ARMv8, for ARMv8-A architecture profile

since Android 5.0 (Lolopop), non-PIE loading
is no longer supported

El2: Hypervisor Mode
(Trustzone Normal World)

El1: Kernel Mode
(Trustzone Normal World)

EL0: User Mode
(Trustzone Normal World)

AArch64 CPU Exception Level

EL3: Secure Monitor
Trustzone Secure World

N/A

El1: Kernel Mode
(Trustzone Secure World)

EL0: User Mode
(Trustzone Secure World)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 17 / 35

AArch64

instructions: 4-byte aligned and fixed size

mode: user (EL0), kernel (EL1), hypervisor
(EL2) and secure monitor (EL3)

registers: X0-X30 (X29 is FP, X30 is LR), SP
(PC is not accessible)

branch: B, BL (Branch with Link), BLR
(Branch with Link to Register), BR (Branch to
Register), B.cond

memory load: ADR, ADRP, LDR

other: ARM Architecture Reference Manual:
ARMv8, for ARMv8-A architecture profile

since Android 5.0 (Lolopop), non-PIE loading
is no longer supported

El2: Hypervisor Mode
(Trustzone Normal World)

El1: Kernel Mode
(Trustzone Normal World)

EL0: User Mode
(Trustzone Normal World)

AArch64 CPU Exception Level

EL3: Secure Monitor
Trustzone Secure World

N/A

El1: Kernel Mode
(Trustzone Secure World)

EL0: User Mode
(Trustzone Secure World)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 17 / 35

AArch64

instructions: 4-byte aligned and fixed size

mode: user (EL0), kernel (EL1), hypervisor
(EL2) and secure monitor (EL3)

registers: X0-X30 (X29 is FP, X30 is LR), SP
(PC is not accessible)

branch: B, BL (Branch with Link), BLR
(Branch with Link to Register), BR (Branch to
Register), B.cond

memory load: ADR, ADRP, LDR

other: ARM Architecture Reference Manual:
ARMv8, for ARMv8-A architecture profile

since Android 5.0 (Lolopop), non-PIE loading
is no longer supported

El2: Hypervisor Mode
(Trustzone Normal World)

El1: Kernel Mode
(Trustzone Normal World)

EL0: User Mode
(Trustzone Normal World)

AArch64 CPU Exception Level

EL3: Secure Monitor
Trustzone Secure World

N/A

El1: Kernel Mode
(Trustzone Secure World)

EL0: User Mode
(Trustzone Secure World)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 17 / 35

AArch64

instructions: 4-byte aligned and fixed size

mode: user (EL0), kernel (EL1), hypervisor
(EL2) and secure monitor (EL3)

registers: X0-X30 (X29 is FP, X30 is LR), SP
(PC is not accessible)

branch: B, BL (Branch with Link), BLR
(Branch with Link to Register), BR (Branch to
Register), B.cond

memory load: ADR, ADRP, LDR

other: ARM Architecture Reference Manual:
ARMv8, for ARMv8-A architecture profile

since Android 5.0 (Lolopop), non-PIE loading
is no longer supported

El2: Hypervisor Mode
(Trustzone Normal World)

El1: Kernel Mode
(Trustzone Normal World)

EL0: User Mode
(Trustzone Normal World)

AArch64 CPU Exception Level

EL3: Secure Monitor
Trustzone Secure World

N/A

El1: Kernel Mode
(Trustzone Secure World)

EL0: User Mode
(Trustzone Secure World)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 17 / 35

NORAX

NORAX: Enabling Execute-Only Memory for COTS
Binaries on AArch64

∗YaohuiChen,∗DongliZhang ,† RuowenWang ,∗ RuiQiao,
†AhmedM.Azab,∗ LongLu,†HayawardhVijayakumar ,†WenboShen

∗Stony Brook University †Samsung Research America

IEEE Symposium on Security & Privacy (Oakland) 2017

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 18 / 35

XOM on AArch64

commit, revert and commit
1 2016-08-25, arm64: Introduce execute-only page access permissions
2 2014-05-16, Revert ”arm64: Introduce execute-only page access permissions”
3 2014-05-09, arm64: Introduce execute-only page access permissions

last commit (2016-08-25): cab15ce604e550020bb7115b779013b91bcdbc21

gcc/llvm (AFAIK) does not support code-data seperation

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 19 / 35

NORAX Solution

1 separate data and code to different pages
2 properly update all references

.rodata
section

inline
data

 .text section .rodata
section

inline
data

executable
memory page read-only

memory page

1. migrate inline data and
read-only data to new
read-only memory page

2. Redirect memory access
from code

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 20 / 35

Executable Data Relocation Sample

3e34: 90000032 adrp x18, 7000
3e34: 90000032 adrp x18, 14000
3e38: 91104240 add x0, x18, #0x410
3e38: 91104240 add x0, x18, #0x440
3e3c: 97fff8cd bl 2170 <puts@plt>
… …
… …
… ...
6fd0: rodata
… …
… ...
14000: new rodata

5190: 5c001341 ldr d1, 53f8
5190: xxxxxxxx b 7000
5194: 1e612040 fcmp d2, d1
… ...
53f8: ffffffff .inst 0xffffffff
53fc: 7fefffff .inst 0x7fefffff
5400: 52d0e560 .inst 0x52d0e560
… …
7000: xxxxxxxx ldr d1, 143f8
7004: xxxxxxxx b 5194
… ...
143f8: ffffffff .inst 0xffffffff
143fc: 7fefffff .inst 0x7fefffff
14400: 52d0e560 .inst 0x52d0e560

Read-only Data Relocation Inline Data Relocation

duplicate
inline data

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 21 / 35

NORAX Challenges

rodata and executable inline data
Reference from code (.text)
Reference from symbol table (.dynsym)
Reference from relocation table (.rela.dyn)
Reference from global offset table (.got)
Reference from read-only global data (.data.rel.ro)

read-only ELF header
Reference from linker

.eh frame hdr/.eh frame
Reference from C++ runtime

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 22 / 35

NORAX Challenges

rodata and executable inline data
Reference from code (.text)
Reference from symbol table (.dynsym)
Reference from relocation table (.rela.dyn)
Reference from global offset table (.got)
Reference from read-only global data (.data.rel.ro)

read-only ELF header
Reference from linker

.eh frame hdr/.eh frame
Reference from C++ runtime

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 22 / 35

NORAX Challenges

rodata and executable inline data
Reference from code (.text)
Reference from symbol table (.dynsym)
Reference from relocation table (.rela.dyn)
Reference from global offset table (.got)
Reference from read-only global data (.data.rel.ro)

read-only ELF header
Reference from linker

.eh frame hdr/.eh frame
Reference from C++ runtime

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 22 / 35

Design Goals

Code-Data Separation: precision vs. practical

A complete set of executable data

A subset of references

Security

Expose as less code as possible

Enforce policy based security on missed references

Practicability

Low runtime and memory overhead

Non-exclusive binary hardening solution

Backward compatibility

Modularity support

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 23 / 35

Design Goals

Code-Data Separation: precision vs. practical

A complete set of executable data

A subset of references

Security

Expose as less code as possible

Enforce policy based security on missed references

Practicability

Low runtime and memory overhead

Non-exclusive binary hardening solution

Backward compatibility

Modularity support

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 23 / 35

Design Goals

Code-Data Separation: precision vs. practical

A complete set of executable data

A subset of references

Security

Expose as less code as possible

Enforce policy based security on missed references

Practicability

Low runtime and memory overhead

Non-exclusive binary hardening solution

Backward compatibility

Modularity support

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 23 / 35

NORAX Framework

NDisassembler: collect executable data and references
NPatcher: static binary transformation
NLoader: update executable data references
NMonitor: runtime policy check for false-positive

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 24 / 35

NORAX: NDisassembler

Algorithm 1 and Algorithm 2 in NORAX paper for
details

1 Linear-sweep disassembly (objdump -d)
2 Identify executable data position (rodata or inline) and

reference (adr(p) or ldr)
3 For unbounded data, collect a set of over-approximated

date via Unbounded Data Expansion (Algorithm 2)

code

rodata

inline
data

Identify executable data
reference sites

Identify over-approximated
set of executable data

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 25 / 35

NORAX: NPatcher

New memory layout

New location of the executable data
Take into consideration reference addressing range, and
emit stub code if needed

Append NORAX-related metadata to the end

Duplicated inline data
References locations and displacements
Stub code
NORAX header

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 26 / 35

NORAX: NLoader

Ld-1: Setup NORAX book-keeping data
and new mapping of read-only data and
sections

Ld-2: Redirect .dynamic access to new
read-only sections

Ld-3: Adjust all referencees and enable
XOM

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 27 / 35

NORAX: NMonitor

Missed reference to embedded data

NDisassembler may miss some references

Reference to .eh frame hdr and .eh frame

KERNEL

USER

CODE DATA RODATA

1)Check if access allowed
2)Emulate load instruction if allowed

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 28 / 35

Evaluation - transformation correctness

LG Nexus 5X (Qualcomm Snapdragon
808MSM8992 (4 x ARM Cortex-A53 & 2
x ARM Cortex-A57), and 2GB RAM)

Android OS v6.0.1 (Marshmallow) with
Linux kernel v3.14 (64-bit)

Changed bionic linker and linux kernel

Tested for 20 core system binaries

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 29 / 35

Evaluation - functionality test

Figure: Functionality Test Result

Figure: Compatibility evaluation with Android
Compatibility Test Suite (CTS)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 30 / 35

Evaluation - embedded data identification

ground truth: compiled with debugging
sections (dwarf .debug *)

very few gadgets in extracted inline data

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 31 / 35

Evaluation - performance

average performance
overhead: 1.18%

average memory
overhead: 2.21%

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 32 / 35

Code Pointer?

The address of next instruction after bl is stored on stack and visible to attacker

Function pointer or function address in .got are visible to attacker

#include <stdio.h>

void foo(void)
{

printf("Hello World!\n");
}

int main(int argc, char **argv)
{

foo();
return 0;

}

00000000004005c0 <foo>:
 4005c0: a9bf7bfd stp x29, x30, [sp,#-16]!
 4005c4: 910003fd mov x29, sp
 4005c8: 90000000 adrp x0, 400000 <_init-0x3f0>
 4005cc: 911a6000 add x0, x0, #0x698
 4005d0: 97ffffa4 bl 400460 <puts@plt>
 4005d4: d503201f nop
 4005d8: a8c17bfd ldp x29, x30, [sp],#16
 4005dc: d65f03c0 ret

00000000004005e0 <main>:
 4005e0: a9be7bfd stp x29, x30, [sp,#-32]!
 4005e4: 910003fd mov x29, sp
 4005e8: b9001fa0 str w0, [x29,#28]
 4005ec: f9000ba1 str x1, [x29,#16]
 4005f0: 97fffff4 bl 4005c0 <foo>
 4005f4: 52800000 mov w0, #0x0 // #0
 4005f8: a8c27bfd ldp x29, x30, [sp],#32
 4005fc: d65f03c0 ret

change sp, then
store x29 (FP) and x30 (LR)

load x29 (FP) and x30 (LR),
then change sp

bl stores address of
next instruction to x30 (LR)

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 33 / 35

Interesting Paper/Link

64-bit Linux Return-Oriented Programming. http://crypto.stanford.edu/∼blynn/rop

ROPgadget: https://github.com/JonathanSalwan/ROPgadget

Practical Code Randomization Resilient to Memory Disclosure. IEEE S & P 2015

Control Flow Integrity for COTS Binaries. USENIX Security 2013

SoK: Eternal War in Memory. IEEE S & P 2013

http://shell-storm.org

Control-Flow Integrity. CCS 2005

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 34 / 35

Take-Home Message

Shellcode injection and execution are not prerequisite for ROP

Fine-grained ASLR cannot defend JIT-ROP attack

Direct memory disclosure and indirect memory disclosure

XOM is supported by Intel EPT and AArch64 userspace

Code-data separation is possible for AArch64 COTS binary

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 35 / 35

Take-Home Message

Shellcode injection and execution are not prerequisite for ROP

Fine-grained ASLR cannot defend JIT-ROP attack

Direct memory disclosure and indirect memory disclosure

XOM is supported by Intel EPT and AArch64 userspace

Code-data separation is possible for AArch64 COTS binary

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 35 / 35

Take-Home Message

Shellcode injection and execution are not prerequisite for ROP

Fine-grained ASLR cannot defend JIT-ROP attack

Direct memory disclosure and indirect memory disclosure

XOM is supported by Intel EPT and AArch64 userspace

Code-data separation is possible for AArch64 COTS binary

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 35 / 35

Take-Home Message

Shellcode injection and execution are not prerequisite for ROP

Fine-grained ASLR cannot defend JIT-ROP attack

Direct memory disclosure and indirect memory disclosure

XOM is supported by Intel EPT and AArch64 userspace

Code-data separation is possible for AArch64 COTS binary

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 35 / 35

Take-Home Message

Shellcode injection and execution are not prerequisite for ROP

Fine-grained ASLR cannot defend JIT-ROP attack

Direct memory disclosure and indirect memory disclosure

XOM is supported by Intel EPT and AArch64 userspace

Code-data separation is possible for AArch64 COTS binary

Dongli Zhang (Oracle) Conceal ROP gadgets for AArch64 COTS binary December 11, 2017 35 / 35

	Title
	Plan
	Code Injection Attack
	Stack Smashing Mitigations
	Code Reuse Attack (1/2)
	Code Reuse Attack (2/2)
	Fine-Grained Address Space Layout Randomization (ASLR)
	Just-In-Time Return Oriented Programming Attack
	Memory Disclosure
	Readactor 1/2
	Readactor 2/2
	New and Hard Problem
	COTS Binary - Commercial Off-The-Shelf
	ELF - Linking vs. Execution
	ELF - load executable ELF
	ELF - resolve dynamic symbol
	AArch64
	NORAX
	XOM on AArch64
	NORAX Solution
	Executable Data Relocation Sample
	NORAX Challenges
	Design Goals
	NORAX Framework
	NORAX: NDisassembler
	NORAX: NPatcher
	NORAX: NLoader
	NORAX: NMonitor
	Evaluation - transformation correctness
	Evaluation - functionality test
	Evaluation - embedded data identification
	Evaluation - performance
	Code Pointer?
	Interesting Paper/Link
	Take-Home Message

