
48 March/April 2015 Copublished by the IEEE Computer and Reliability Societies 1540-7993/15/$31.00 © 2015 IEEE

IEEE S&P SYMPOSIUM

Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter, and Radu Sion | Stony Brook University

An essential goal of virtual machine introspection (VMI) is security policy enforcement in the presence of
an untrustworthy OS. One obstacle to this goal is the diffi culty in accurately extracting semantic meaning
from the hypervisor’s hardware-level view of a guest OS.

V irtual machine introspection (VMI) techniques
allow an external security monitor to observe

soft ware behavior inside a virtual machine (VM),
including the guest OS. For example, we can use VMI
to list programs running inside a VM—comparable
to ps on Unix systems or Windows Task Manager.
Obtaining a process list outside a VM is appealing from
a security perspective because security administrators
can identify illicit programs on a system, even if the
OS kernel is compromised. Th ere are also nonsecurity
benefi ts to listing processes outside the VM, such as
standardization of administrative utilities across mul-
tiple guest OSs.

A simple VMI-based process list would identify pro-
cess descriptors’ memory addresses and typecast them
(in C parlance) to interpret their content. VMI develop-
ers must fi nd the kernel data structures, such as process
descriptors, by searching publicly available symbols for
the addresses of the process descriptors’ data structure.

Any guest OS abstraction can be introspected,
including open fi le descriptors, network sockets, and
interprocess communication abstractions. For instance,
storage system prototypes have used VMI to track
whether disk writes are data or metadata, writing meta-
data changes to disk more aggressively than data.1 In

this article, we focus on in-memory data structures and
CPU register state.

VMI is appealing because it can move OS security
monitoring out of the OS. Widely used OS kernels are
generally very large and aff ord litt le fault or security
isolation among components; are writt en in languages
such as C or C++ that off er litt le protection against
exploitable programmer errors; and have complex,
hard-to-secure APIs. Th us, if any OS kernel component
has an exploitable bug, all OS-level security measures
are easily disabled.

In our process listing example, a rootkit module
could tamper with the kernel’s mechanism for listing
the set of running processes, oft en to hide other mal-
ware running on the system. Not only could an eff ec-
tive rootkit hide malware from a process listing utility or
antivirus system inside the OS, it could also avoid detec-
tion and removal. A VMI monitor can view all guest OS
memory and identify rootkits.

Th e fundamental challenge underlying VMI is how
to reliably infer what’s happening in the guest OS. In
our simple example, the VMI monitor has direct access
only to hardware-level states, such as CPU registers and
memory contents, and must make inferences about
high-level abstractions, such as process descriptors and

Introspections on the Semantic Gap

www.computer.org/security 49

open files. This mismatch is called the semantic gap.2 In
this article, we summarize the major known techniques
to bridge the semantic gap and discuss attacks on and
defenses against these techniques.

Assumptions
Because bridging the semantic gap is such a challeng-
ing problem, most techniques have introduced assump-
tions that limit the threat model. In our process listing
example, the VMI monitor uses knowledge obtained
out of band, such as debugging symbols and structure
definitions, and must assume that the potentially com-
promised guest OS is using these symbols and struc-
tures as expected. In some cases, we can detect deviation
from assumed OS behavior, but many assumptions are
hard to check. For instance, it’s difficult to verify that the
binary name listed in a process descriptor is an accurate
description of what’s running in the process. Each frag-
ile assumption is a potential vector for adversaries to
confuse and evade the VMI monitor.

As a result, most VMI techniques assume the guest
OS is benign—initially not malicious, but poten-
tially compromised after boot. VMI designs currently
assume generous limits on the degree to which a
compromised guest OS can actively work to confuse
a VMI monitor, and these limits aren’t always expli-
cated. Nonetheless, VMI tools designed under this
threat model can still have practical value, as OSs can
be benign in practice.

Basic VMI System Design
The first consideration in VMI design is where to
place the monitor, which directly influences how the
monitor accesses guest memory and CPU state. Fig-
ure 1 illustrates options for VMI monitor placement,
including in the hypervisor (with possible hardware
assistance), in the guest OS, in a sibling VM, or out-
side the hypervisor (in a Type 2, or hosted, hypervisor
only—not shown).

To access hardware information, such as CPU reg-
ister contents, an in-hypervisor monitor can directly
access hypervisor-internal data structures. When the
monitor is moved out of the hypervisor, the hypervisor
must export other hardware information to the monitor
via an additional interface.

Placing the introspection tool in a sibling VM is par-
ticularly popular for several reasons. First, a sibling VM
can have a read-only or copy-on-write mapping of the
guest OS’s memory, creating a high-bandwidth channel
to traverse data structures. Second, this design requires
minimal changes to the hypervisor and protects it from
bugs in the VMI monitor. Finally, a VMI monitor devel-
oper can use a familiar environment, such as a compa-
rable OS kernel and helper functions.

Trading Risk for Performance with Asynchrony
The second question is when to introspect. In our exam-
ple, suppose we want to know each time a process is cre-
ated or destroyed. A synchronous mechanism requires
one or more triggering events, such as changing the
process descriptor list or scheduling a process. When a
triggering event occurs, the hypervisor pauses the VM,
and the VMI tool introspects the process descriptor list.
In contrast, an asynchronous mechanism would intro-
spect memory concurrently with guest execution, gen-
erally at a configurable interval.

A typical introspection pass that checks data struc-
ture invariants takes milliseconds to minutes; pausing
the VM for this length of time in a synchronous design
is unacceptable. Asynchrony limits CPU overhead,
generally to a few percent, by adjusting the frequency
of checks.

Asynchrony’s primary disadvantage is that it must
handle transient OS states, whereas a carefully placed
synchronous triggering event can avoid transient states.
While executing inside a critical section, an OS might
violate its own invariants temporarily. A correct OS will,
of course, restore the invariants before exiting the criti-
cal section. If an introspection monitor searches mem-
ory during a kernel-critical section, the monitor might
observe benign violations of these invariants. Current
approaches to this problem include looking for repeated
violations of an invariant (leaving the system vulnerable
to race conditions with attackers) or introspecting only
when the OS can’t be in critical sections, for example,
by preempting each CPU while out of the guest kernel.

Hardware Acceleration
Several VMI prototypes have used hardware to accel-
erate or offload introspection. One major approach is

Figure 1. Monitor placement options in virtual machine
introspection (VMI): in a sibling virtual machine (VM), the
hypervisor, the guest OS, or the hardware. In-guest and
hardware solutions require assistance from the hypervisor.

App App App

Guest OS

Hypervisor

Hardware

Sibling VM

50 IEEE Security & Privacy March/April 2015

IEEE S&P SYMPOSIUM

snapshotting, wherein a device takes a snapshot of RAM,
using, say, a tool on the PCI bus, and offloads the snap-
shot to another machine for asynchronous introspection.

More recent systems have used snooping on the sys-
tem memory bus as a lightweight triggering mechanism.
On commodity hardware, page protections are the pri-
mary technique to monitor access to many memory loca-
tions. The coarse granularity of page protections leads
to many needless checks triggered by memory accesses
adjacent to the monitored structure. Unlike page protec-
tions, snooping systems can monitor writes at the finer
granularity of cache lines, reducing needless checks.

Initial snooping systems used customized hardware,
although a recent design leveraged best-effort hardware
transactional memory on commodity chips to imple-
ment snooping, at the cost of one dedicated core.3
Snooping can be synchronous or asynchronous.

Prevention versus Detection
Some introspection tools prevent security policy viola-
tions, such as execution of unauthorized code, whereas
others detect a compromise only after the fact. Clearly,
prevention is a more desirable goal but requires a mech-
anism to identify and interpose on low-level operations
that might violate a system security policy. Certain
goals map naturally onto hardware mechanisms, such
as page protections on kernel code. Other goals, such
as upholding kernel data structure invariants, are open
questions. All current prevention systems employ some
form of memory protection to synchronously interpose
on sensitive data writes.

As a result, current VMI tools detect only violations
of more challenging properties, generally using peri-
odic introspections. Periodic checks are a good fit for
malware that leaves persistent modifications but can
miss transient modifications. A straw man approach
to prevent violations of data structure invariants might
trigger synchronous introspection on all writes to all
security- relevant objects—which would be prohibi-
tively expensive. Moreover, because some invariants
span multiple writes, the straw man approach would

likely yield false negatives without deeper analysis of
the code behavior. Prevention techniques based on
memory bus snooping might be more efficient, but this
is an open research question.

Bridges across the Semantic Gap
To cross the semantic gap, a VMI system must extract
high-level abstractions from the running guest system.
We describe the three primary techniques to bridge
the semantic gap—learning and reconstruction, code
implanting, and process outgrafting—and their under-
lying trust assumptions in Table 1.

One assumption common to all these techniques is
that the executable kernel code doesn’t change between
introspection tool creation and guest OS monitoring.
This requires a measure of kernel integrity protection,
discussed in more detail in “SoK: Introspections on
Trust and the Semantic Gap.”4

Learning and Reconstruction
The first technique reconstructs data structures from
memory contents. Data structure reconstruction can be
divided into learning and searching phases. The learn-
ing phase creates data structure signatures using tech-
niques including expert knowledge, source analysis, and
dynamic analysis. A signature identifies and defines data
structure instances.

The search phase uses the signatures to identify
and interpret data structures. A search can be either
a linear scan of kernel memory or a traversal of data
structure pointers, starting with public symbols. It is
arguable which approach is more efficient, because
many kernel data structures can have cyclic or invalid
pointers but might require traversing less total mem-
ory. However, the linear scan of kernel memory is
robust in the presence of “disconnected” structures or
other attempts to obfuscate pointers. Both techniques
can observe transient states when searching concur-
rently with OS operation.

There are three major techniques for learning data
structure signatures.

Table 1. VMI techniques, their underlying trust assumptions, and monitor placement.

Technique Assumptions Monitor placement

Automated learning and reconstruction (source
analysis or offline training)

Benign copy of OS for training; OS will behave similarly
during learning phase and monitoring; security-sensitive
invariants can be automatically learned; and attacks will
persist long enough for periodic scans

Sibling VM, hypervisor, or
hardware

Code implanting (hypervisor protects monitor
inside guest OS)

Malicious guest schedules monitoring tool and reports
information accurately

Guest with hypervisor
protection

Process outgrafting (reuse monitoring tools
from sibling VM with shared kernel memory)

Live, benign copy of OS behaves identically to monitored OS Sibling VM

www.computer.org/security 51

Handcrafted signatures. Introspection and forensic
analysis tools initially used handcrafted signatures,
based on expert knowledge of the internal workings of
an OS. Handcrafted signatures have an inherent limita-
tion: each change to an OS kernel requires an expert
to update the tools. For instance, a new version of the
Linux kernel is released every two to three months;
bug-fix updates can be as frequent as every few weeks.
Each of these releases can change a data structure lay-
out or invariant. Similarly, different compilers or ver-
sions of the same compiler can change the layout of a
data structure in memory, frustrating handwritten tools.
Automated techniques have become popular to keep
pace with these release schedules and the variety of OS
kernels and compilers.

Source code analysis. Automated reconstruction tools
might rely on source code analysis or debugging infor-
mation to extract data structure definitions and lever-
age source invariants to reduce false positives during the
search phase.

A basic application of source analysis identifies all
kernel object types, and then traverses the graph of
pointers, starting from global symbols. A key challenge
in creating this graph of data structures is that not all
pointers in a data structure point to valid data. For exam-
ple, the Linux dcache uses deferred memory reclama-
tion of a directory entry structure, called a dentry, to
avoid synchronization with readers. When a dentry is
on a to-be-freed list, it might point to memory that has
already been freed and reallocated for another purpose;
an implicit invariant is that these pointers will no lon-
ger be followed once the dentry is on this list. Unfor-
tunately, these implicit invariants can thwart simple
pointer traversal.

An alternative is to use the structure of this pointer
graph as a signature.5 For instance, the pointers among
task_struct structures in Linux form a different
graph from pointers connecting inode structures.

Dynamic learning. Rather than identifying code invari-
ants from kernel source code, we can observe a run-
ning OS instance to learn data structure invariants.5,6
 Analogous to supervised machine learning, the VMI
tool trains on a trusted OS instance, and then classi-
fies the data structures of potentially untrusted OS
instances. During the training phase, these systems
often control the stimuli by running programs that will
manipulate a data structure of interest or incorporat-
ing debugging symbols to discern more quickly which
memory regions might include a structure of interest.

Some dynamic systems have also developed robust
signatures, which are immune to malicious changes to
live data structure instances.6 The primary utility of

robust signatures is detecting when a rootkit attempts
to hide persistent data by modifying data structures
in ways that the kernel doesn’t expect. However, these
attempts are fruitful only if they don’t crash the OS
kernel. Thus, robust signatures leverage invariants an
attacker can’t safely violate.

Code Implanting
A simpler approach to bridging the semantic gap is
to inject code into the guest OS that reports seman-
tic information back to the hypervisor. For instance,
Syringe implants functions into the kernel, which can
be called from the VM.7 A challenge to implanting code
is ensuring that the implanted code isn’t tampered with
and actually executes, and that the guest OS compo-
nents it uses report correct information. Most of these
implanting techniques ultimately rely on the guest ker-
nel to faithfully represent information, such as the pro-
cess list, to the injected code.

Process Outgrafting
To overcome the challenges with running a trusted pro-
cess inside an untrusted VM, process outgrafting relo-
cates a monitoring process from the monitored VM to a
second, trusted VM.8 The trusted VM has some visibility
into the monitored VM’s kernel memory, allowing VMI
tools to access any kernel data structures without direct
interference from an adversary in the monitored VM.

The Virtual Machine Space Traveler generalizes this
approach by running a trusted, clean copy of the OS with
a roughly copy-on-write view of the monitored guest.9
Monitoring applications, such as ps, simply execute in
a complete OS environment on the monitoring VM;
each executed system call actually reads the state from
the monitored VM. This approach bridges the semantic
gap by repurposing existing OS code. However, it has
open problems, such as reconciling divergences in the
guest kernel’s copy-on-write views.

Attacks, Defense, and Trust
Here, we explain the three major classes of attacks
against VMI—kernel object hooking (KOH), dynamic
kernel object manipulation (DKOM), and direct ker-
nel structure manipulation (DKSM)—known defenses
against these attacks, and how these attacks relate to
trust placed in the guest OS. These issues are summa-
rized in Table 2 and illustrated in Figure 2.

Kernel Object Hooking
KOH attacks modify function pointers (hooks) located
in the kernel text or data sections, such as those used to
implement an extensible virtual file system model. As
Figures 2a and 2b illustrate, attackers might replace the
iterate function call pointer to filter malware from

52 IEEE Security & Privacy March/April 2015

IEEE S&P SYMPOSIUM

monitoring software. Defenses against KOH attacks
generally depend on whether the hook is located in the
kernel’s text or data segment.

Text section hooks. The primary text section hooks are
the system call table and interrupt descriptor table. For
instance, attackers could interpose on all file open sys-
tem calls simply by replacing the function pointer with
the sys_open() function in the system call table. To
prevent malware from overwriting these hooks, most
kernels now place them in the read-only text segment.
In a VMI system, the hypervisor can prevent malware
from changing read-only page permissions.

Data section hooks. Kernel data section hooks are more
difficult to protect than text section hooks because they
place function pointers in objects to facilitate extensi-
bility. For instance, the Adore-ng rootkit replaces the
directory listing function of the /proc directory (see
Figure 2b), hiding itself from the output.10 The funda-
mental challenge is that although these hooks generally
do not change during the object’s lifetime, they are often
located on the same page or even in the same cache line
with fields that must change, thwarting defenses based
on simple page protections.

To defend against such attacks, function pointers
must be protected from modification once initialized.
Because of the high cost of moderating all writes to these
data structures, most defenses either move the hooks to
different locations that can be write protected11 or aug-
ment hooks in the kernel with checks against a whitelist
of trusted functions.12

Trust. Preventing text section modification is a prereq-
uisite for current VMI techniques. Defenses against
KOH on data hooks effectively assume that kernel
modules are benign in order to provide meaningful
protections without solving the significantly harder

problem of kernel control flow integrity in the presence
of untrusted modules.

Dynamic Kernel Object Manipulation
DKOM attacks modify the kernel heap through a loaded
module or an application accessing /dev/mem or
/proc/kcore on Linux.13 DKOM attacks modify only
data values and thus are distinct from attacks that modify
the control flow through function hooks (KOH).

DKOM attacks invalidate latent assumptions in
unmodified kernel code. A classic DKOM example is
hiding a malicious process. The Linux kernel tracks pro-
cesses in two separate data structures: a linked list for
process listing and a tree for scheduling (see Figure 2c).
A rootkit can hide malicious processes by taking the
process out of the linked list but leaving the malicious
process in the scheduler tree. Interestingly, loading a
module is sufficient to alter the behavior of unrelated,
unmodified kernel code.

DKOM attacks are hard to prevent because they are
a needle in a haystack of expected kernel heap writes. As
a result, most practical defenses attempt to identify data
structure invariants by hand, static, or dynamic analysis,
and then detect data structure invariant violations asyn-
chronously. Because attackers can create objects from any
memory, not just the kernel heap allocator, data structure
detection is a salient issue for detecting DKOM attacks.

DKOM defenses introduce additional trust in the
guest beyond a KOH defense and make several assump-
tions that attackers can violate. Most DKOM defenses
work by identifying security-related data structure
invariants. Because it is difficult for defenders to have
confidence that all security-relevant invariants have
been identified, this approach will likely be best effort
and reactive in nature.

Another problematic assumption is that all kernel
data structures’ security-sensitive fields have invariants
that can be checked easily in a single memory snapshot

Table 2. VMI attacks, defenses, and underlying trust assumptions.

Attack Defense Trust assumption

Kernel object hooking (KOH;
code and hooks)

Memory-protect hooks from text
section modification or whitelist
loadable modules

Pristine initial OS copy and administrator’s ability to discern
trustworthy kernel modules

Dynamic kernel object
manipulation (heap)

Identify data structure invariants or
detect violations by scanning memory
snapshots

Guest kernel exhibits only desirable behavior during training,
or source is trustworthy; all security-relevant data structure
invariants can be identified a priori; all malware will leave
persistent modifications that violate an invariant; all invariants
can be checked in a single search; and attackers can’t win races
with the monitor

Direct kernel structure
manipulation

Prevent bootstrapping through KOH
or return-oriented programming

OS is benign and behaves identically during training and
classification

www.computer.org/security 53

or scan. For instance, a VMI-based approach to detect
network sockets could be thwarted by a rootkit that
copies packets directly from the heap of an applica-
tion to the outgoing network driver. In this example,
the inconsistency between outgoing packets and open
sockets spans a sequence of operations, which can’t be
captured with one snapshot.

DKOM defenses cement trust that the guest kernel
is benign. These defenses train data structure classifiers
on a clean kernel instance or derive the classifiers from
source code, which is assumed to demonstrate only
desirable behavior during the training phase.

The interesting contrast between KOH and DKOM
is that DKOM defenses can detect invalid data modifica-
tion in the presence of an untrustworthy module, whereas
common KOH defenses rely on module whitelisting.
Thus, if a DKOM defense intends to tolerate untrusted
modules, it must build on a KOH defense that’s robust to
untrusted modules as well, which might require substan-
tially stronger control flow integrity protection.

Finally, these detection systems explicitly assume
malware will leave persistent, detectable modifica-
tions and implicitly assume malware can’t win races
with the detector. DKOM detectors rely on invariant
violations being present in the view of memory they
 analyze—either a snapshot or a concurrent search.
Because DKOM detectors run in increments of sec-
onds, short-lived malware could evade detection. If
a rootkit can reliably predict when a DKOM detector
will view kernel memory, it can temporarily repair data
structure invariants— racing with the detector. To our
knowledge, no work has successfully exploited this race
condition, but this issue deserves further investigation.

Direct Kernel Structure Manipulation
DKSM attacks change the interpretation of a data
structure between training a VMI tool and classify-
ing memory regions into data structures.14 Figure 2d
illustrates a simple DKSM attack by a malicious ker-
nel, which selectively swaps two data structure fields to
hide the presence of malware from a VMI tool based on
standard headers.

Because most VMI tools assume a benign kernel,
successful DKSM attacks hinge on changing kernel con-
trol flow without changing kernel text. Two previously
proposed bootstrapping mechanisms are KOH attacks
and return-oriented programming—both of which
have known countermeasures.

DKSM is an oddity in the literature because it’s
effectively precluded by a generous threat model. How-
ever, a realistic threat model might allow an adversarial
OS to demonstrate different behavior during the data
structure training and classification phases—analogous
to “split personality” malware that behaves differently

Figure 2. Overview of kernel process listing. (a) Pseudocode to list running
process IDs by reading the /proc directory. (b) Virtual file system–level
pseudocode for reading a directory, which calls low-level file system calls,
such as proc_pid_readdir, in Figure 2a. A kernel object hooking (KOH)
attack replaces the iterate function pointer in the file handle for /proc. (c) A
dynamic kernel object manipulation (DKOM) attack selectively violates data
structure invariants, such as the assumption that all processes are on a list (for
listing) and a tree (for scheduling). (d) Pseudocode example of a direct kernel
structure manipulation (DKSM) attack, where process initialization changes the
interpretation of process descriptor fields for a program name to confuse a tool
searching for known malware.

int
proc_pid_readdir(file *f, ...) {
 foreach task in task_list
 return task->tgid;
}

(a)

int iterate_dir(file *f, ...) {
 f->f_op->iterate(f, ...);
}

(b)

A

B F

C

A B C D F

Scheduler tree
Listing tree

D E

(c)

set_task_comm(task *tsk, char *name,...) {
 strlcpy(tsk->comm, name, sizeof(tsk->comm);
 if (malware) {
 tsk->notifier = kmalloc(strlen(name));
 strncpy(tsk->notifier, tsk->comm,
 strlen(name)+1);
 strncpy(tsk->comm, “browser”, 7);
 }
}

(d)

54 IEEE Security & Privacy March/April 2015

IEEE S&P SYMPOSIUM

when it detects that it is under analysis. Under a stron-
ger threat model, a malicious OS could actively mislead
VMI tools to violate a security policy.

Th e Semantic Gap Is Really Two Problems
In the VMI literature, the semantic gap problem evolved
to refer to two distinct issues: the largely solved engineer-
ing challenges of generating introspection tools, possibly
without source code, and a malicious or compromised
OS’s ability to exploit fragile assumptions underlying
many introspection designs to evade a security measure.

We suggest a clearer nomenclature for the two sub-
problems: the weak and
strong semantic gap
problems, respectively.
Th e weak semantic gap
is a solved engineering
problem. Th e strong
semantic gap problem
is, to our knowledge,
unsolved, and a solution
would also prevent or detect DKSM att acks launched by
malicious guest OSs. Our paper, “SoK: Introspections
on Trust and the Semantic Gap,” provides a more com-
plete treatment of these issues.4

Toward an Untrusted OS
Some techniques from related research might help
bridge the strong semantic gap.

Paraverifi cation
Many VMI systems have an implicit design goal of
working with an unmodifi ed OS, which induces trust
in the guest OS to simplify the problem. A useful
stepping-stone might be to modify the OS to aid in its
own introspection.

InkTag introduced the idea of paraverifi cation, in
which a guest OS provides a hypervisor with evidence
that it is servicing an application’s request correctly.15

Th e hypervisor can easily check the evidence off ered by
the guest OS without trusting the guest OS. For instance,
if a trusted application requests a memory mapping of a
fi le, the application would also report the request to the
hypervisor. Th e OS then submits evidence to the hyper-
visor that changes to hardware-level page tables are an
appropriate response to the memory-mapping request,
which the hypervisor then verifi es. Although InkTag’s
goals diff er from VMI’s, the idea of forcing an untrusted
OS to aid in its own introspection could be fruitful if the
techniques were simple enough to adopt.

Mutual Distrust in Hardware
Intel has recently taken an interesting direction, devel-
oping a mutual distrust model for hardware memory

protection called Soft ware Guard Extensions (SGX).
SGX lets an OS or hypervisor manage an application’s
virtual-to-physical OS mappings, but the lower-level
soft ware can’t access memory contents. In the context
of introspection or the strong semantic gap, hardware
like SGX could be useful for creating a fi ner-grained
protection domain for code implanted in the guest OS.

Reconstruction from Untrusted Sources
Current tools that automatically learn data structure sig-
natures assume the OS will behave similarly during train-
ing and classifi cation. Among the assumptions in current

VMI tools, this one has the
best chance of being
incrementally removed.
For example, one
approach might train
VMI classifi ers on the
live OS and continue
incremental training as
the guest OS runs. Sim-

ilarly, continuous monitoring might detect inconsisten-
cies between the VMI’s training and classifi cation stages.

V irtual machine introspection is a relatively mature
research topic that has made substantial advances

in the 12 years since the semantic gap problem was
posed. However, eff orts in this space should focus on
removing trust from the guest OS to strengthen overall
system security.

Acknowledgments
We thank Virgil Gligor, Bill Jannen, and the anonymous review-
ers for their insightful comments on earlier draft s. Th is research
was supported in part by NSF grants CNS-1149229, CNS-
1161541, CNS-1228839, CNS- 1318572, CNS-1223239, and
CCF-0937833; the US ARMY award W911NF-13-1-0142;
the Offi ce of the Vice President for Research at Stony Brook
University; and gift s from Northrop Grumman Corporation,
Parc/Xerox, Microsoft Research, and CA.

References
1. V. Tarasov et al., “Improving I/O Performance Using

Virtual Disk Introspection,” Proc. 5th USENIX Work-
shop Hot Topics in Storage and File Systems (HotStorage
13), 2013, p. 11.

2. P.M. Chen and B.D. Noble, “When Virtual Is Bett er Th an
Real,” Proc. 8th Workshop Hot Topics in Operating Systems,
(HotOS 01), 2001, pp. 133–138.

3. Y. Liu et al., “Concurrent and Consistent Virtual Machine
Introspection with Hardware Transactional Memory,”
Proc. IEEE 20th Int’l Symp. High Performance Computer
Architecture, 2014, pp. 416–427.

Eff orts in virtual machine introspection
should focus on removing trust
from the guest OS to strengthen

overall system security.

www.computer.org/security 55

4. B. Jain et al., “SoK: Introspections on Trust and the Semantic
Gap,” IEEE Symp. Security and Privacy, 2014, pp. 605–620.

5. Z. Lin et al., “SigGraph: Brute Force Scanning of Kernel
Data Structure Instances Using Graph-Based Signatures,”
Proc. 18th Ann. Network and Distributed System Security
Symp., 2011; www.internetsociety.org/sites/default/files
/lin.pdf.

6. B. Dolan-Gavitt et al., “Robust Signatures for Kernel Data
Structures,” Proc. 16th ACM Conf. Computer and Commu-
nications Security, 2009, pp. 566–577.

7. M. Carbone et al., “Secure and Robust Monitoring of Vir-
tual Machines through Guest-Assisted Introspection,”
Research in Attacks, Intrusions, and Defenses, LNCS 7462,
Springer, 2012, pp. 22–41.

8. D. Srinivasan et al., “Process Out-Grafting: An Efficient
‘Out-of-VM’ Approach for Fine-Grained Process Execu-
tion Monitoring,” Proc. 18th ACM Conf. Computer and
Communications Security, 2011, pp. 363–374.

9. Y. Fu and Z. Lin, “Space Traveling across VM: Automati-
cally Bridging the Semantic Gap in Virtual Machine Intro-
spection via Online Kernel Data Redirection,” Proc. IEEE
Symp. Security and Privacy, 2012, pp. 586–600.

10. J. Corbet, “A New Adore Root Kit,” Linux Weekly News,
Mar. 2004; http://lwn.net/Articles/75990.

11. Z. Wang et al., “Countering Kernel Rootkits with Light-
weight Hook Protection,” Proc. 16th ACM Conf. Computer
and Communications Security, 2009, pp. 545–554.

12. N.L. Petroni Jr. and M. Hicks, “Automated Detection of Per-
sistent Kernel Control-Flow Attacks,” Proc. 14th ACM Conf.
Computer and Communications Security, 2007, pp. 103–115.

13. J. Butler and G. Hoglund, “Vice—Catch the Hookers,”
Black Hat USA, vol. 61, 2004, pp. 17–35.

14. S. Bahram et al., “DKSM: Subverting Virtual Machine
Introspection for Fun and Profit,” Proc. 29th IEEE Symp.
Reliable Distributed Systems, 2010, pp. 82–91.

15. O.S. Hofmann et al., “InkTag: Secure Applications on an
Untrusted Operating System,” Proc. 18th Int’l Conf. Archi-
tectural Support for Programming Languages and Operating
Systems, 2013, pp. 265–278.

Bhushan Jain is a PhD candidate in computer science at
Stony Brook University. His research interests include
virtualization security, memory isolation, and system
security. Jain received a B.Tech in computer engineer-
ing from College of Engineering Pune. Contact him at
bpjain@cs.stonybrook.edu.

Mirza Basim Baig is an MS candidate in computer sci-
ence at Stony Brook University. His research interests
include data mining, machine learning, and graph
theory. Basim Baig received a BS in computer science
from Lahore University of Management Sciences,
School of Science and Engineering (LUMS-SSE).
Contact him at mbaig@cs.stonybrook.edu.

Dongli Zhang is a PhD candidate in computer science at
Stony Brook University. His research interests include
system security, virtualization, and cloud comput-
ing. Zhang received an MS in computer science from
Stony Brook University. Contact him at dozhang@
cs.stonybrook.edu.

Donald E. Porter is an assistant professor of computer
science at Stony Brook University. His research inter-
ests include system security, operating systems, and
virtualization. Porter received a PhD in computer sci-
ence from The University of Texas at Austin. Contact
him at porter@cs.stonybrook.edu.

Radu Sion is an associate professor of computer science
at Stony Brook University. His main interests lie in
systems, cybersecurity, and efficient and large-scale
computing. Sion received a PhD in computer sci-
ence from Purdue University. Contact him at sion@
cs.stonybrook.edu.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

NEW
STORE

Find the latest trends
and insights for your

• presentations
• research
• events

webstore.computer.org

CSStore_quarter_kc_updated.indd 1 7/2/14 10:47 AM

