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An essential goal of virtual machine introspection (VMI) is security policy enforcement in the presence of 
an untrustworthy OS. One obstacle to this goal is the diffi  culty in accurately extracting semantic meaning 
from the hypervisor’s hardware-level view of a guest OS. 

V irtual machine introspection (VMI) techniques 
allow an external security monitor to observe 

soft ware behavior inside a virtual machine (VM), 
including the guest OS. For example, we can use VMI 
to list programs running inside a VM—comparable 
to ps on Unix systems or Windows Task Manager. 
Obtaining a process list outside a VM is appealing from 
a security perspective because security administrators 
can identify illicit programs on a system, even if the 
OS kernel is compromised. Th ere are also nonsecurity 
benefi ts to listing processes outside the VM, such as 
standardization of administrative utilities across mul-
tiple guest OSs. 

A simple VMI-based process list would identify pro-
cess descriptors’ memory addresses and typecast them 
(in C parlance) to interpret their content. VMI develop-
ers must fi nd the kernel data structures, such as process 
descriptors, by searching publicly available symbols for 
the addresses of the process descriptors’ data structure. 

Any guest OS abstraction can be introspected, 
including open fi le descriptors, network sockets, and 
interprocess communication abstractions. For instance, 
storage system prototypes have used VMI to track 
whether disk writes are data or metadata, writing meta-
data changes to disk more aggressively than data.1 In 

this article, we focus on in-memory data structures and 
CPU register state.

VMI is appealing because it can move OS security 
monitoring out of the OS. Widely used OS kernels are 
generally very large and aff ord litt le fault or security 
isolation among components; are writt en in languages 
such as C or C++ that off er litt le protection against 
exploitable programmer errors; and have complex, 
hard-to-secure APIs. Th us, if any OS kernel component 
has an exploitable bug, all OS-level security measures 
are easily disabled. 

In our process listing example, a rootkit module 
could tamper with the kernel’s mechanism for listing 
the set of running processes, oft en to hide other mal-
ware running on the system. Not only could an eff ec-
tive rootkit hide malware from a process listing utility or 
antivirus system inside the OS, it could also avoid detec-
tion and removal. A VMI monitor can view all guest OS 
memory and identify rootkits.

Th e fundamental challenge underlying VMI is how 
to reliably infer what’s happening in the guest OS. In 
our simple example, the VMI monitor has direct access 
only to hardware-level states, such as CPU registers and 
memory contents, and must make inferences about 
high-level abstractions, such as process descriptors and 
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open files. This mismatch is called the semantic gap.2 In 
this article, we summarize the major known techniques 
to bridge the semantic gap and discuss attacks on and 
defenses against these techniques. 

Assumptions
Because bridging the semantic gap is such a challeng-
ing problem, most techniques have introduced assump-
tions that limit the threat model. In our process listing 
example, the VMI monitor uses knowledge obtained 
out of band, such as debugging symbols and structure 
definitions, and must assume that the potentially com-
promised guest OS is using these symbols and struc-
tures as expected. In some cases, we can detect deviation 
from assumed OS behavior, but many assumptions are 
hard to check. For instance, it’s difficult to verify that the 
binary name listed in a process descriptor is an accurate 
description of what’s running in the process. Each frag-
ile assumption is a potential vector for adversaries to 
confuse and evade the VMI monitor. 

As a result, most VMI techniques assume the guest 
OS is benign—initially not malicious, but poten-
tially compromised after boot. VMI designs currently 
assume generous limits on the degree to which a 
compromised guest OS can actively work to confuse 
a VMI monitor, and these limits aren’t always expli-
cated. Nonetheless, VMI tools designed under this 
threat model can still have practical value, as OSs can 
be benign in practice. 

Basic VMI System Design
The first consideration in VMI design is where to 
place the monitor, which directly influences how the 
monitor accesses guest memory and CPU state. Fig-
ure 1 illustrates options for VMI monitor placement, 
including in the hypervisor (with possible hardware 
assistance), in the guest OS, in a sibling VM, or out-
side the hypervisor (in a Type 2, or hosted, hypervisor 
only—not shown). 

To access hardware information, such as CPU reg-
ister contents, an in-hypervisor monitor can directly 
access hypervisor-internal data structures. When the 
monitor is moved out of the hypervisor, the hypervisor 
must export other hardware information to the monitor 
via an additional interface. 

Placing the introspection tool in a sibling VM is par-
ticularly popular for several reasons. First, a sibling VM 
can have a read-only or copy-on-write mapping of the 
guest OS’s memory, creating a high-bandwidth channel 
to traverse data structures. Second, this design requires 
minimal changes to the hypervisor and protects it from 
bugs in the VMI monitor. Finally, a VMI monitor devel-
oper can use a familiar environment, such as a compa-
rable OS kernel and helper functions. 

Trading Risk for Performance with Asynchrony
The second question is when to introspect. In our exam-
ple, suppose we want to know each time a process is cre-
ated or destroyed. A synchronous mechanism requires 
one or more triggering events, such as changing the 
process descriptor list or scheduling a process. When a 
triggering event occurs, the hypervisor pauses the VM, 
and the VMI tool introspects the process descriptor list. 
In contrast, an asynchronous mechanism would intro-
spect memory concurrently with guest execution, gen-
erally at a configurable interval. 

A typical introspection pass that checks data struc-
ture invariants takes milliseconds to minutes; pausing 
the VM for this length of time in a synchronous design 
is unacceptable. Asynchrony limits CPU overhead, 
generally to a few percent, by adjusting the frequency 
of checks. 

Asynchrony’s primary disadvantage is that it must 
handle transient OS states, whereas a carefully placed 
synchronous triggering event can avoid transient states. 
While executing inside a critical section, an OS might 
violate its own invariants temporarily. A correct OS will, 
of course, restore the invariants before exiting the criti-
cal section. If an introspection monitor searches mem-
ory during a kernel-critical section, the monitor might 
observe benign violations of these invariants. Current 
approaches to this problem include looking for repeated 
violations of an invariant (leaving the system vulnerable 
to race conditions with attackers) or introspecting only 
when the OS can’t be in critical sections, for example, 
by preempting each CPU while out of the guest kernel.

Hardware Acceleration
Several VMI prototypes have used hardware to accel-
erate or offload introspection. One major approach is 

Figure 1. Monitor placement options in virtual machine 
introspection (VMI): in a sibling virtual machine (VM), the 
hypervisor, the guest OS, or the hardware. In-guest and 
hardware solutions require assistance from the hypervisor.
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snapshotting, wherein a device takes a snapshot of RAM, 
using, say, a tool on the PCI bus, and offloads the snap-
shot to another machine for asynchronous introspection. 

More recent systems have used snooping on the sys-
tem memory bus as a lightweight triggering mechanism. 
On commodity hardware, page protections are the pri-
mary technique to monitor access to many memory loca-
tions. The coarse granularity of page protections leads 
to many needless checks triggered by memory accesses 
adjacent to the monitored structure. Unlike page protec-
tions, snooping systems can monitor writes at the finer 
granularity of cache lines, reducing needless checks. 

Initial snooping systems used customized hardware, 
although a recent design leveraged best-effort hardware 
transactional memory on commodity chips to imple-
ment snooping, at the cost of one dedicated core.3 
Snooping can be synchronous or asynchronous. 

Prevention versus Detection
Some introspection tools prevent security policy viola-
tions, such as execution of unauthorized code, whereas 
others detect a compromise only after the fact. Clearly, 
prevention is a more desirable goal but requires a mech-
anism to identify and interpose on low-level operations 
that might violate a system security policy. Certain 
goals map naturally onto hardware mechanisms, such 
as page protections on kernel code. Other goals, such 
as upholding kernel data structure invariants, are open 
questions. All current prevention systems employ some 
form of memory protection to synchronously interpose 
on sensitive data writes. 

As a result, current VMI tools detect only violations 
of more challenging properties, generally using peri-
odic introspections. Periodic checks are a good fit for 
malware that leaves persistent modifications but can 
miss transient modifications. A straw man approach 
to prevent violations of data structure invariants might 
trigger synchronous introspection on all writes to all 
security- relevant objects—which would be prohibi-
tively expensive. Moreover, because some invariants 
span multiple writes, the straw man approach would 

likely yield false negatives without deeper analysis of 
the code behavior. Prevention techniques based on 
memory bus snooping might be more efficient, but this 
is an open research question. 

Bridges across the Semantic Gap
To cross the semantic gap, a VMI system must extract 
high-level abstractions from the running guest system. 
We describe the three primary techniques to bridge 
the semantic gap—learning and reconstruction, code 
implanting, and process outgrafting—and their under-
lying trust assumptions in Table 1. 

One assumption common to all these techniques is 
that the executable kernel code doesn’t change between 
introspection tool creation and guest OS monitoring. 
This requires a measure of kernel integrity protection, 
discussed in more detail in “SoK: Introspections on 
Trust and the Semantic Gap.”4 

Learning and Reconstruction
The first technique reconstructs data structures from 
memory contents. Data structure reconstruction can be 
divided into learning and searching phases. The learn-
ing phase creates data structure signatures using tech-
niques including expert knowledge, source analysis, and 
dynamic analysis. A signature identifies and defines data 
structure instances. 

The search phase uses the signatures to identify 
and interpret data structures. A search can be either 
a linear scan of kernel memory or a traversal of data 
structure pointers, starting with public symbols. It is 
arguable which approach is more efficient, because 
many kernel data structures can have cyclic or invalid 
pointers but might require traversing less total mem-
ory. However, the linear scan of kernel memory is 
robust in the presence of “disconnected” structures or 
other attempts to obfuscate pointers. Both techniques 
can observe transient states when searching concur-
rently with OS operation. 

There are three major techniques for learning data 
structure signatures. 

Table 1. VMI techniques, their underlying trust assumptions, and monitor placement. 

Technique Assumptions Monitor placement

Automated learning and reconstruction (source 
analysis or offline training)

Benign copy of OS for training; OS will behave similarly 
during learning phase and monitoring; security-sensitive 
invariants can be automatically learned; and attacks will 
persist long enough for periodic scans

Sibling VM, hypervisor, or 
hardware

Code implanting (hypervisor protects monitor 
inside guest OS)

Malicious guest schedules monitoring tool and reports      
information accurately

Guest with hypervisor 
protection

Process outgrafting (reuse monitoring tools 
from sibling VM with shared kernel memory)

Live, benign copy of OS behaves identically to monitored OS Sibling VM
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Handcrafted signatures. Introspection and forensic 
analysis tools initially used handcrafted signatures, 
based on expert knowledge of the internal workings of 
an OS. Handcrafted signatures have an inherent limita-
tion: each change to an OS kernel requires an expert 
to update the tools. For instance, a new version of the 
Linux kernel is released every two to three months; 
bug-fix updates can be as frequent as every few weeks. 
Each of these releases can change a data structure lay-
out or invariant. Similarly, different compilers or ver-
sions of the same compiler can change the layout of a 
data structure in memory, frustrating handwritten tools. 
Automated techniques have become popular to keep 
pace with these release schedules and the variety of OS 
kernels and compilers. 

Source code analysis. Automated reconstruction tools 
might rely on source code analysis or debugging infor-
mation to extract data structure definitions and lever-
age source invariants to reduce false positives during the 
search phase. 

A basic application of source analysis identifies all 
kernel object types, and then traverses the graph of 
pointers, starting from global symbols. A key challenge 
in creating this graph of data structures is that not all 
pointers in a data structure point to valid data. For exam-
ple, the Linux dcache uses deferred memory reclama-
tion of a directory entry structure, called a dentry, to 
avoid synchronization with readers. When a dentry is 
on a to-be-freed list, it might point to memory that has 
already been freed and reallocated for another purpose; 
an implicit invariant is that these pointers will no lon-
ger be followed once the dentry is on this list. Unfor-
tunately, these implicit invariants can thwart simple 
pointer traversal. 

An alternative is to use the structure of this pointer 
graph as a signature.5 For instance, the pointers among 
task_struct structures in Linux form a different 
graph from pointers connecting inode structures. 

Dynamic learning. Rather than identifying code invari-
ants from kernel source code, we can observe a run-
ning OS instance to learn data structure invariants.5,6 
 Analogous to supervised machine learning, the VMI 
tool trains on a trusted OS instance, and then classi-
fies the data structures of potentially untrusted OS 
instances. During the training phase, these systems 
often control the stimuli by running programs that will 
manipulate a data structure of interest or incorporat-
ing debugging symbols to discern more quickly which 
memory regions might include a structure of interest. 

Some dynamic systems have also developed robust 
signatures, which are immune to malicious changes to 
live data structure instances.6 The primary utility of 

robust signatures is detecting when a rootkit attempts 
to hide persistent data by modifying data structures 
in ways that the kernel doesn’t expect. However, these 
attempts are fruitful only if they don’t crash the OS 
kernel. Thus, robust signatures leverage invariants an 
attacker can’t safely violate. 

Code Implanting 
A simpler approach to bridging the semantic gap is 
to inject code into the guest OS that reports seman-
tic information back to the hypervisor. For instance, 
Syringe implants functions into the kernel, which can 
be called from the VM.7 A challenge to implanting code 
is ensuring that the implanted code isn’t tampered with 
and actually executes, and that the guest OS compo-
nents it uses report correct information. Most of these 
implanting techniques ultimately rely on the guest ker-
nel to faithfully represent information, such as the pro-
cess list, to the injected code. 

Process Outgrafting 
To overcome the challenges with running a trusted pro-
cess inside an untrusted VM, process outgrafting relo-
cates a monitoring process from the monitored VM to a 
second, trusted VM.8 The trusted VM has some visibility 
into the monitored VM’s kernel memory, allowing VMI 
tools to access any kernel data structures without direct 
interference from an adversary in the monitored VM. 

The Virtual Machine Space Traveler generalizes this 
approach by running a trusted, clean copy of the OS with 
a roughly copy-on-write view of the monitored guest.9 
Monitoring applications, such as ps, simply execute in 
a complete OS environment on the monitoring VM; 
each executed system call actually reads the state from 
the monitored VM. This approach bridges the semantic 
gap by repurposing existing OS code. However, it has 
open problems, such as reconciling divergences in the 
guest kernel’s copy-on-write views. 

Attacks, Defense, and Trust 
Here, we explain the three major classes of attacks 
against VMI—kernel object hooking (KOH), dynamic 
kernel object manipulation (DKOM), and direct ker-
nel structure manipulation (DKSM)—known defenses 
against these attacks, and how these attacks relate to 
trust placed in the guest OS. These issues are summa-
rized in Table 2 and illustrated in Figure 2. 

Kernel Object Hooking 
KOH attacks modify function pointers (hooks) located 
in the kernel text or data sections, such as those used to 
implement an extensible virtual file system model. As 
Figures 2a and 2b illustrate, attackers might replace the 
iterate function call pointer to filter malware from 
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monitoring software. Defenses against KOH attacks 
generally depend on whether the hook is located in the 
kernel’s text or data segment. 

Text section hooks. The primary text section hooks are 
the system call table and interrupt descriptor table. For 
instance, attackers could interpose on all file open sys-
tem calls simply by replacing the function pointer with 
the sys_open() function in the system call table. To 
prevent malware from overwriting these hooks, most 
kernels now place them in the read-only text segment. 
In a VMI system, the hypervisor can prevent malware 
from changing read-only page permissions. 

Data section hooks. Kernel data section hooks are more 
difficult to protect than text section hooks because they 
place function pointers in objects to facilitate extensi-
bility. For instance, the Adore-ng rootkit replaces the 
directory listing function of the /proc directory (see 
Figure 2b), hiding itself from the output.10 The funda-
mental challenge is that although these hooks generally 
do not change during the object’s lifetime, they are often 
located on the same page or even in the same cache line 
with fields that must change, thwarting defenses based 
on simple page protections. 

To defend against such attacks, function pointers 
must be protected from modification once initialized. 
Because of the high cost of moderating all writes to these 
data structures, most defenses either move the hooks to 
different locations that can be write protected11 or aug-
ment hooks in the kernel with checks against a whitelist 
of trusted functions.12 

Trust. Preventing text section modification is a prereq-
uisite for current VMI techniques. Defenses against 
KOH on data hooks effectively assume that kernel 
modules are benign in order to provide meaningful 
protections without solving the significantly harder 

problem of kernel control flow integrity in the presence 
of untrusted modules. 

Dynamic Kernel Object Manipulation
DKOM attacks modify the kernel heap through a loaded 
module or an application accessing /dev/mem or  
/proc/kcore on Linux.13 DKOM attacks modify only 
data values and thus are distinct from attacks that modify 
the control flow through function hooks (KOH). 

DKOM attacks invalidate latent assumptions in 
unmodified kernel code. A classic DKOM example is 
hiding a malicious process. The Linux kernel tracks pro-
cesses in two separate data structures: a linked list for 
process listing and a tree for scheduling (see Figure 2c). 
A rootkit can hide malicious processes by taking the 
process out of the linked list but leaving the malicious 
process in the scheduler tree. Interestingly, loading a 
module is sufficient to alter the behavior of unrelated, 
unmodified kernel code. 

DKOM attacks are hard to prevent because they are 
a needle in a haystack of expected kernel heap writes. As 
a result, most practical defenses attempt to identify data 
structure invariants by hand, static, or dynamic analysis, 
and then detect data structure invariant violations asyn-
chronously. Because attackers can create objects from any 
memory, not just the kernel heap allocator, data structure 
detection is a salient issue for detecting DKOM attacks. 

DKOM defenses introduce additional trust in the 
guest beyond a KOH defense and make several assump-
tions that attackers can violate. Most DKOM defenses 
work by identifying security-related data structure 
invariants. Because it is difficult for defenders to have 
confidence that all security-relevant invariants have 
been identified, this approach will likely be best effort 
and reactive in nature. 

Another problematic assumption is that all kernel 
data structures’ security-sensitive fields have invariants 
that can be checked easily in a single memory snapshot 

Table 2. VMI attacks, defenses, and underlying trust assumptions.

Attack Defense Trust assumption

Kernel object hooking (KOH; 
code and hooks)

Memory-protect hooks from text 
section modification or whitelist 
loadable modules

Pristine initial OS copy and administrator’s ability to discern 
trustworthy kernel modules

Dynamic kernel object 
manipulation (heap)

Identify data structure invariants or 
detect violations by scanning memory 
snapshots

Guest kernel exhibits only desirable behavior during training, 
or source is trustworthy; all security-relevant data structure 
invariants can be identified a priori; all malware will leave 
persistent modifications that violate an invariant; all invariants 
can be checked in a single search; and attackers can’t win races 
with the monitor

Direct kernel structure 
manipulation 

Prevent bootstrapping through KOH 
or return-oriented programming

OS is benign and behaves identically during training and 
classification
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or scan. For instance, a VMI-based approach to detect 
network sockets could be thwarted by a rootkit that 
copies packets directly from the heap of an applica-
tion to the outgoing network driver. In this example, 
the inconsistency between outgoing packets and open 
sockets spans a sequence of operations, which can’t be 
captured with one snapshot. 

DKOM defenses cement trust that the guest kernel 
is benign. These defenses train data structure classifiers 
on a clean kernel instance or derive the classifiers from 
source code, which is assumed to demonstrate only 
desirable behavior during the training phase.

The interesting contrast between KOH and DKOM 
is that DKOM defenses can detect invalid data modifica-
tion in the presence of an untrustworthy module, whereas 
common KOH defenses rely on module whitelisting. 
Thus, if a DKOM defense intends to tolerate untrusted 
modules, it must build on a KOH defense that’s robust to 
untrusted modules as well, which might require substan-
tially stronger control flow integrity protection. 

Finally, these detection systems explicitly assume 
malware will leave persistent, detectable modifica-
tions and implicitly assume malware can’t win races 
with the detector. DKOM detectors rely on invariant 
violations being present in the view of memory they 
 analyze—either a snapshot or a concurrent search. 
Because DKOM detectors run in increments of sec-
onds, short-lived malware could evade detection. If 
a rootkit can reliably predict when a DKOM detector 
will view kernel memory, it can temporarily repair data 
structure invariants— racing with the detector. To our 
knowledge, no work has successfully exploited this race 
condition, but this issue deserves further investigation. 

Direct Kernel Structure Manipulation 
DKSM attacks change the interpretation of a data 
structure between training a VMI tool and classify-
ing memory regions into data structures.14 Figure 2d 
illustrates a simple DKSM attack by a malicious ker-
nel, which selectively swaps two data structure fields to 
hide the presence of malware from a VMI tool based on 
standard headers. 

Because most VMI tools assume a benign kernel, 
successful DKSM attacks hinge on changing kernel con-
trol flow without changing kernel text. Two previously 
proposed bootstrapping mechanisms are KOH attacks 
and return-oriented programming—both of which 
have known countermeasures. 

DKSM is an oddity in the literature because it’s 
effectively precluded by a generous threat model. How-
ever, a realistic threat model might allow an adversarial 
OS to demonstrate different behavior during the data 
structure training and classification phases—analogous 
to “split personality” malware that behaves differently 

Figure 2. Overview of kernel process listing. (a) Pseudocode to list running 
process IDs by reading the /proc directory. (b) Virtual file system–level 
pseudocode for reading a directory, which calls low-level file system calls, 
such as proc_pid_readdir, in Figure 2a. A kernel object hooking (KOH) 
attack replaces the iterate function pointer in the file handle for /proc. (c) A 
dynamic kernel object manipulation (DKOM) attack selectively violates data 
structure invariants, such as the assumption that all processes are on a list (for 
listing) and a tree (for scheduling). (d) Pseudocode example of a direct kernel 
structure manipulation (DKSM) attack, where process initialization changes the 
interpretation of process descriptor fields for a program name to confuse a tool 
searching for known malware. 

int
proc_pid_readdir(file *f, ...) {
  foreach task in task_list
    return task->tgid;
}

(a)

int iterate_dir(file *f, ...) {
  f->f_op->iterate(f, ...);
}

(b)

A

B F

C

A B C D F

Scheduler tree
Listing tree

D E

(c)

set_task_comm(task *tsk, char *name,...) {
  strlcpy(tsk->comm, name, sizeof(tsk->comm);
  if (malware) {
    tsk->notifier = kmalloc(strlen(name));
    strncpy(tsk->notifier, tsk->comm,
            strlen(name)+1);
    strncpy(tsk->comm, “browser”, 7);
  }
}

(d)
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when it detects that it is under analysis. Under a stron-
ger threat model, a malicious OS could actively mislead 
VMI tools to violate a security policy. 

Th e Semantic Gap Is Really Two Problems 
In the VMI literature, the semantic gap problem evolved 
to refer to two distinct issues: the largely solved engineer-
ing challenges of generating introspection tools, possibly 
without source code, and a malicious or compromised 
OS’s ability to exploit fragile assumptions underlying 
many introspection designs to evade a security measure.

We suggest a clearer nomenclature for the two sub-
problems: the weak and 
strong semantic gap
problems, respectively. 
Th e weak semantic gap 
is a solved engineering 
problem. Th e strong 
semantic gap problem 
is, to our knowledge, 
unsolved, and a solution 
would also prevent or detect DKSM att acks launched by 
malicious guest OSs. Our paper, “SoK: Introspections 
on Trust and the Semantic Gap,” provides a more com-
plete treatment of these issues.4

Toward an Untrusted OS
Some techniques from related research might help 
bridge the strong semantic gap. 

Paraverifi cation
Many VMI systems have an implicit design goal of 
working with an unmodifi ed OS, which induces trust 
in the guest OS to simplify the problem. A useful 
stepping-stone might be to modify the OS to aid in its 
own introspection. 

InkTag introduced the idea of paraverifi cation, in 
which a guest OS provides a hypervisor with evidence 
that it is servicing an application’s request correctly.15

Th e hypervisor can easily check the evidence off ered by 
the guest OS without trusting the guest OS. For instance, 
if a trusted application requests a memory mapping of a 
fi le, the application would also report the request to the 
hypervisor. Th e OS then submits evidence to the hyper-
visor that changes to hardware-level page tables are an 
appropriate response to the memory-mapping request, 
which the hypervisor then verifi es. Although InkTag’s 
goals diff er from VMI’s, the idea of forcing an untrusted 
OS to aid in its own introspection could be fruitful if the 
techniques were simple enough to adopt. 

Mutual Distrust in Hardware
Intel has recently taken an interesting direction, devel-
oping a mutual distrust model for hardware memory 

protection called Soft ware Guard Extensions (SGX). 
SGX lets an OS or hypervisor manage an application’s 
virtual-to-physical OS mappings, but the lower-level 
soft ware can’t access memory contents. In the context 
of introspection or the strong semantic gap, hardware 
like SGX could be useful for creating a fi ner-grained 
protection domain for code implanted in the guest OS.

Reconstruction from Untrusted Sources
Current tools that automatically learn data structure sig-
natures assume the OS will behave similarly during train-
ing and classifi cation. Among the assumptions in current 

VMI tools, this one has the 
best chance of being 
incrementally removed. 
For example, one 
approach might train 
VMI classifi ers on the 
live OS and continue 
incremental training as 
the guest OS runs. Sim-

ilarly, continuous monitoring might detect inconsisten-
cies between the VMI’s training and classifi cation stages. 

V irtual machine introspection is a relatively mature 
research topic that has made substantial advances 

in the 12 years since the semantic gap problem was 
posed. However, eff orts in this space should focus on 
removing trust from the guest OS to strengthen overall 
system security. 
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