Xen is not just paravirtualization

Dongli Zhang

Oracle Asia Research and Development Centers (Beijing)

dongli.zhang@oracle.com

December 16, 2016

Dongli Zhang (Oracle)

Xen is not just paravirtualization

December 16, 2016 1 / 30

• Virtualization

• Xen Virtualization

3

メロト メポト メヨト メヨ

- Virtualization
- Xen Virtualization

When discussing virtualizatin ...

- 1) CPU Virtualization?
- 2) Memory Virtualization?
- 3) Device Virtualization?

• A virtual machine is taken to be an efficient, isolated duplicate of the real machine (by Formal Requirements for Virtualizable Third Generation Architectures, Gerald J.Popek and Rebert P. Goldberg, 1974)

• A virtual machine is taken to be an efficient, isolated duplicate of the real machine (by Formal Requirements for Virtualizable Third Generation Architectures, Gerald J.Popek and Rebert P. Goldberg, 1974)

Trap and Emulate

- Virtual Machine (Guest) at Unprivileged Mode
- Virtual Machine Monitor (Host or Hypervisor) at Priviledged Mode

Dongli Zhang (Oracle)

x86 is NOT virtualizable

- Virtualizable Architecture: all **sensitive instructions** must also be **privileged instructions** (by Gerald J.Popek and Rebert P. Goldberg)
- critical instructions = sensitive instructions privileged instructions

- Virtualizable Architecture: all **sensitive instructions** must also be **privileged instructions** (by Gerald J.Popek and Rebert P. Goldberg)
- critical instructions = sensitive instructions privileged instructions
- 18 critical instructions on x86 (Analysis of the Intel Pentium's Ability to Support a Secure Virtual Machine Monitor. USENIX Security 2000):
 - SGDT/SIDT/SLDT, SMSW, PUSHF/POPF
 - LAR/LSL, VERR/VERW, POP/PUSH
 - CALL, JMP, INT n, RET
 - STR, MOV

- Virtualizable Architecture: all **sensitive instructions** must also be **privileged instructions** (by Gerald J.Popek and Rebert P. Goldberg)
- **critical instructions** = sensitive instructions privileged instructions
- 18 critical instructions on x86 (Analysis of the Intel Pentium's Ability to Support a Secure Virtual Machine Monitor. USENIX Security 2000):
 - SGDT/SIDT/SLDT, SMSW, PUSHF/POPF
 - LAR/LSL, VERR/VERW, POP/PUSH
 - CALL, JMP, INT n, RET
 - STR, MOV
- Solutions:
 - Binary Translation (QEMU, VMWare)
 - Paravirtualization (Xen)
 - Hardware-Assisted Virtualization (Xen, KVM, VMWare based on Intel-VT and AMD-V)

∃ ► < ∃ ►</p>

Solution 1/3: Binary Translation

• philosophy: rewrite critical instructions

Solution 2/3: Hardware Virtualization (Intel VT)

• philosophy: instroduce new privileged mode

- CPU hardware virtualization extensions (Intel VT or AMD-V)
- Loadable kernel module (kvm.ko, kvm-intel.ko/kvm-amd.ko)
- QEMU as userspace emulator

Solution 3/3: Paravirtualization

- philosophy: replace critical instructions with hypercalls
- A hypercall is a software trap from a domain to the hypervisor, just as a syscall is a software trap from an application to the kernel
 - x86_32: int 0x82
 - x86_64: syscall instruction
 - x86 Intel-VT vmcall instruction

• Binary Translation (QEMU, Bochs, VMWare)

- Binary Translation (QEMU, Bochs, VMWare)
- Paravirtualization (Xen)

- Binary Translation (QEMU, Bochs, VMWare)
- Paravirtualization (Xen)
- Hardware-assisted Virtualization (KVM, Xen, VMware)

- Binary Translation (QEMU, Bochs, VMWare)
- Paravirtualization (Xen)
- Hardware-assisted Virtualization (KVM, Xen, VMware)
- OS-level Virtualization (Linux Container)

- Binary Translation (QEMU, Bochs, VMWare)
- Paravirtualization (Xen)
- Hardware-assisted Virtualization (KVM, Xen, VMware)
- OS-level Virtualization (Linux Container)
- Programming Language Virtualization (Java, .NET CLR)

- Binary Translation (QEMU, Bochs, VMWare)
- Paravirtualization (Xen)
- Hardware-assisted Virtualization (KVM, Xen, VMware)
- OS-level Virtualization (Linux Container)
- Programming Language Virtualization (Java, .NET CLR)
- Library Virtualization (Wine, Cygwin)

Wikipedia

Xen Project is a hypervisor using a **microkernel** design, providing services that allow multiple computer operating systems to execute on the same computer hardware concurrently.

Wikipedia

Xen Project is a hypervisor using a **microkernel** design, providing services that allow multiple computer operating systems to execute on the same computer hardware concurrently.

SOSP 2003: Xen and the Art of Virtualization

This paper presents Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality.

Wikipedia

Xen Project is a hypervisor using a **microkernel** design, providing services that allow multiple computer operating systems to execute on the same computer hardware concurrently.

SOSP 2003: Xen and the Art of Virtualization

This paper presents Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality.

Basic Idea of Paravirtualization

Actively inform the hypervisor with the action guest is going to taken via hypercall

Xen Framework 1/2

xen hypervisor (microkernel): dictator

- scheduling, memory management, interrupt and device control
- per-domain and per-vcpu info management

Xen Framework 1/2

xen hypervisor (microkernel): dictator

- scheduling, memory management, interrupt and device control
- per-domain and per-vcpu info management

dom0 (host): privileged admin

- xm/xend/xl (libxc)
- pygrub/hvmloader
- xenstored
- qemu and paravirtual driver backend
- native device driver

Xen Framework 1/2

xen hypervisor (microkernel): dictator

- scheduling, memory management, interrupt and device control
- per-domain and per-vcpu info management

dom0 (host): privileged admin

- xm/xend/xl (libxc)
- pygrub/hvmloader
- xenstored
- qemu and paravirtual driver backend
- native device driver

domU (guest): non-privileged user

• paravirtual driver frontend

Dongli Zhang (Oracle)

Convert Linux to Paravirtual Dom0/DomU

- ELF notes (Linux) or __xen_guest section (MiniOS) in kernel image
- Enable xen features in .config when building kernel

	CONFIG_XEN=Y
	CONFIG XEN DOMO=V
105 ELFNOTE(Xen, XEN_ELFNOTE_GUEST_OS, .asciz "linux")	CONETC YEN DVHVM-V
<pre>106 ELFNOTE(Xen, XEN_ELFNOTE_GUEST_VERSION, .asciz "2.6")</pre>	
107 ELFNOTE(Xen, XEN_ELFNOTE_XEN_VERSION, .asciz "xen-3.0")	CONFIG_XEN_512GB=y
108 #ifdef CONFIG_X86_32	CONFIG XEN SAVE RESTORE=y
109 ELFNOTE(Xen, XEN_ELFNOTE_VIRT_BASE, _ASM_PTRPAGE_OFFSET)	CONETG XEN BI KDEV FRONTEND=V
110 #else	CONFIC VEN BLEDEV BACKEND-m
111 ELFNOTE(Xen, XEN_ELFNOTE_VIRT_BASE,ASM_PTRSTART_KERNEL_map)	
112 /* Map the p2m table to a S12GB-aligned user address. */	CONFIG_XEN_NETDEV_FRONTEND=y
113 ELFNOTE(Xen, XEN_ELFNOTE_INIT_P2M, .quad PGDIR_SIZE)	CONFIG_XEN_NETDEV_BACKEND=m
	CONFIG INPUT XEN KBDDEV FRONTEND=m
115 ELFNOTE(Xen, XEN_ELFNOTE_ENTRY, _ASM_PIK_STATCUP_Xen)	CONFIC VEN ERREY ERONTEND m
110 ELFNOIE(Xen, XEN_ELFNOIE_HTPERCALL_PAGE, _ASM_PIK nypercall_page)	CONFIG_XEN_FBDEV_FRONTEND=M
11/ ELENDIE(AEN, AEN_ELENDIE_PEATORES, ascit iwittable_page_tables)pae_	CONFIG_XEN_BALLOON=y
110 ELEMOTE(AEII, AEN_ELEMOTE_SUPPORTED_FRATORES, CONS (FVM_FEATORES)	CONFIG XEN BALLOON MEMORY HOTPLUG=y
(1 << XENEEAT dom())	CONFIG XEN BALLOON MEMORY HOTPLUG I IMIT=512
120 (I S ACHTEAL 2000)	
122 ELENOTE(Xen, XEN_ELENOTE, LOADER, asciz "generic")	CONFIG_XEN_DEV_EVICHN=M
ELENOTE(Xen, XEN ELENOTE L1 MEN VALID.	CONFIG_XEN_BACKEND=y
124	CONFIG XEN XENBUS FRONTEND=y
125 ELFNOTE(Xen, XEN ELFNOTE SUSPEND CANCEL, .long 1)	CONFIG XEN GNTDEV=m
126 ELFNOTE(Xen, XEN ELFNOTE MOD START PFN, ,long 1)	
127 ELFNOTE(Xen, XEN_ELFNOTE_HV_START_LOW, _ASM_PTRHYPERVISOR_VIRT_START)	CONFIG_XEN_GRANI_DEV_ALLOC=M
128 ELFNOTE(Xen, XEN_ELFNOTE_PADDR_OFFSET, _ASM_PTR 0)	CONFIG_XEN_IMEM=m
129	CONFIG XEN PCIDEV BACKEND=m
130 #endif /*CONFIG_XEN */	CONETG XEN PRIVCMD=m
"arch/x86/xen/xen-head.S" 130 lines100%	

PV, HVM or PVHVM

э

Xen CPU Virtualization

- vcpu \approx task_struct
- ${\, \bullet \,}$ domain \approx container or process group
- xen schedules vcpu

Event Channel Types

- Interdomain Event
- Virtual IRQ Event
- Physical IRQ Event
- IPI Event

Registration

- PVM registers event channel handler to Xen via register_callback(CALLBACKTYPE_event, xen_hypervisor_callback)
- PVHVM sets HYPERVISOR_CALLBACK_VECTOR via HYPERVISOR_hvm_op(HVMOP_set_param, &a)

Xen Interrupt Virtualization: Event Channel 2/2

Xen Hypervisor

December 16, 2016 18 / 30

Xen Memory Virtualization 1/2

- Address Types
 - GVA (Guest Virtual Address)
 - GPA (Guest Physical Address) or GFN (Guest page Frame Number)
 - HPA (Host Physical Address) or MFN (Machine page Frame Number)
- Hardware-assisted Memory Virtualization (Method 1/3): Second-Level Page Table
 - : Intel: Extended Page Table (EPT)
 - : AMD: Nested Page Table (NPT)

Xen Memory Virtualization 2/2

- Direct Paging (Method 2/3): guest manage the (GVA, HPA) page table directly
- Shadow Paging (Method 3/3): xen hypervisor maintains a shadow (GVA, HPA) page table which is not awared by guest

• HVM emulated legacy device (QEMU)

- HVM emulated legacy device (QEMU)
- Paravirtual (PV) drivers

- HVM emulated legacy device (QEMU)
- Paravirtual (PV) drivers
- Device Passthrough (vt-d)

- HVM emulated legacy device (QEMU)
- Paravirtual (PV) drivers
- Device Passthrough (vt-d)
- Virtual Function (vt-d)

- HVM emulated legacy device (QEMU)
- Paravirtual (PV) drivers
- Device Passthrough (vt-d)
- Virtual Function (vt-d)

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	
device discovery	PCI Tree	
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

(日)

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	Grant Table
interrupt	IOAPIC, MSI, MSI-X	

(日)

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	Grant Table
interrupt	IOAPIC, MSI, MSI-X	Event Channel

(日)

Xenstore/Xenbus

- Usually put grant ref (not data) in ring
- Grant ref of ring pages are shared via xenstore
- Usually one ring buffer for each device queue
- One or more pages for each ring
- Producer and Consumer (barrier)

A D > A B > A B > A

Xen Paravirtual Networking Framework

Dongli Zhang (Oracle)

3

A D > A B > A B > A B

• COLO - Coarse Grain Lock Stepping

< A

э

- COLO Coarse Grain Lock Stepping
- LivePatch

< A

э

- COLO Coarse Grain Lock Stepping
- LivePatch
- Stealthy monitoring with Xen altp2m

- COLO Coarse Grain Lock Stepping
- LivePatch
- Stealthy monitoring with Xen altp2m
- Real-Time-Deferrable-Server(RTDS) CPU Scheduler

- COLO Coarse Grain Lock Stepping
- LivePatch
- Stealthy monitoring with Xen altp2m
- Real-Time-Deferrable-Server(RTDS) CPU Scheduler
- Windows PV Receive Side Scaling

- COLO Coarse Grain Lock Stepping
- LivePatch
- Stealthy monitoring with Xen altp2m
- Real-Time-Deferrable-Server(RTDS) CPU Scheduler
- Windows PV Receive Side Scaling
- More at Xen Summit and xen-devel

Publications

- Xen and the art of virtualization. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. SOSP 2003
- The Definitive Guide to the Xen Hypervisor. David Chisnall. 2007
- Intel 64 and IA-32 Architectures Software Developer Manuals
- Various system & security research paper and presentation

Miscellaneous

- Xen Project Developer Summit
- https://blog.xenproject.org
- https://github.com/finallyjustice/JOS-vmx

• What is virtualization

Image: A matrix

э

- What is virtualization
- Paravirtualization and Hardware-assisted Virtualization

- What is virtualization
- Paravirtualization and Hardware-assisted Virtualization
- Xen vs. KVM

- What is virtualization
- Paravirtualization and Hardware-assisted Virtualization
- Xen vs. KVM
- Grant Table, Event Channel, Paravirtual Drivers

